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Introduction & Motivation

The n-body problem is a well-studied branch of astrophysics concerning the prediction of
individual motions of a group of celestial objects. Each individual entity in a group of objects
exerts a number of forces on each other object, largely governed by gravitational force. Solving
for the motion of a group of bodies has been useful to practitioners and enthusiasts alike -
astronomers who observe planetary systems want to understand behavior and interactions
between different clusters of objects, and hobbyist stargazers who want to observe the positions
of notable objects within our solar system in the night sky.

As its name suggests, the n-body problem scales in complexity and scope as the number of
celestial objects, n, increases. Beginning with just n ≥ 3, the n-body problem becomes extremely
difficult to solve analytically. The three-body problem, in particular, has been particularly of
interest, perhaps in part due to its deceptively simple problem formulation, and has a
centuries-long dedication of effort to its solution [2]. Recent research has shown that it is
actually theoretically possible to calculate the solutions to the n-body problem as an infinite
series [3], but this is neither feasible nor practically useful in making a realistic prediction of the
motion of bodies.

The alternative is to perform a computational approximation of the objects’ motion. The general
idea is that, knowing the differential equations of object motions, the equations of object position
can be numerically approximated via integration with an appropriate step size. A variety of
numerical integration methods exist in the literature [4] [5] for solving the n-body problem, with
varying degrees of accuracy and stability. Overall, numerical integration has been shown to be
both effective and reliable for predicting motions of planetary systems.

Another dimension of these numerical methods for solving the n-body problem is to consider
computational cost. The dynamics of a group of celestial objects requires that, at every time
step of the computation, the gravitational forces exerted must be recomputed for every pair of
objects in the system. This results in computing the pairwise interaction of forces between each
such pair of objects, and this becomes increasingly expensive to compute as n increases. There
are also methods aimed at improving the computational efficiency of such programs, showing
that these simulation methods are also scalable in size and scope of many-body systems. [5] [6]
[7].

Our report presents a survey of different integration schemes and simulation algorithms. In
particular, we choose to highlight the Barnes-Hut method, which is a simulation method that
scales as n-log-n - that is, almost linearly with the number of bodies observed in our system. To
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qualitatively compare various integration strategies we designed an optimized C++ gui to render
the results of large n-body simulations.

Our report is organized as follows: we first present a survey of different numerical integration
schemes, and report error and stability analyses for each such scheme. We then dedicate the
remainder of this paper to showing and discussing performance benchmarks for different
simulation methods.

Background & Context

N-body Problem Formulation
A simple mathematical formulation of the n-body problem is described as such:

Assume each celestial object can be represented by a point mass at its center of gravity. The
n-body problem considers n point masses mi, i = 1, 2, …, n.

From Newton’s second law of motion, the force on an object, mass times its acceleration, is
equal to the sum of the forces on the object. The force on object i exerted by object j can be
written as

Where G is the gravitational constant, q is the position of each respective object i, j, and

Is the norm of the distance between the two objects.

Applying Newton’s second law of motion, the force exerted on object is the sum of the forces on
the object:

Importantly, note that the force F is composed of multiple components. In two dimensions, each
component of the force can be written as
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Where

Represents the difference in the y-component for the positions of objects j and i. A simple
extension can be made for generalizing to three dimensions.

Numerical Integration
A simple numerical integration scheme for solving the above n-body problem, can be described
with the following algorithm:

1. Solve for the force F, using the equations above

2. Since F=ma, use the force F to solve for acceleration.

3. Use acceleration to update the velocity by a small timestep, dt.

4. Use velocity to update the position by a small timestep, dt.

Symplectic Methods and Hamiltonian Systems
While not within the scope of our project, we briefly discuss the importance of symplectic
integrators and their applications on simulating the n-body problem.

A Hamiltonian system is a formulation of Hamiltonian mechanics which describes how a
physical system evolves over time. Hamiltonian systems are often used to describe complex
time-evolving systems, such as planetary systems. The connection between Hamiltonian
systems and the symplectic integrator is that the system contains symplectic properties.

The advantage of a symplectic method is that it conserves physical properties like angular
momentum and energy of the system. It’s been shown that certain numerical integrators, such
as the leapfrog method, is symplectic [11], and this motivates the following section comparing
the stability and accuracy of various integration schemes.
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Numerical Integration Methods

Forward Euler
From the numerical integration algorithm outlined above, the forward euler method updates the
position at a time with the velocity from the previous timestep. We will refer to this
integration method throughout this report as the naive method.

Leapfrog Method
From the numerical integration algorithm outlined above, the leapfrog method updates the

position at a time with the velocity from the the midpoint, . This method is
symplectic, since it preserves the symmetry of the Hamiltonian equation.

The following rules give us one method for implementing the leapfrog method.

At any given time step i, we set the midpoint velocity by using the acceleration and a small

timestep . We can then update the new position of the object by using the midpoint velocity,
and then update the new velocity as normal. In this way, the position and velocity are kept at a
half-timestep out of phase, with the velocity slightly ahead.

Simulation Methods

Pairwise Interactions
The naive method for simulating the gravitational interaction between many bodies entails
calculating every possible pairwise interaction. For a system of n bodies, this is precisely n(n-1)
possible pairs. This algorithm therefore grows in O(n2), making it a relatively intractable solution
to the many bodies problem, particularly with large n. The algorithm is iterative, and simply uses
two for loops as follows:

1. For each body A:
a. For every other body B:

i. Calculate the force on A by B and add it to A’s force

Due to the poor performance of this method, we use Barnes Hut Algorithm to gain efficiency.
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Barnes Hut Algorithm
The Barnes Hut Algorithm is a recursive algorithm that allows for simulating the many bodies
problem in O(n log n) complexity by the number of bodies. Compared to the naive solution of
calculating all possible pairwise interactions, which goes by O(n2) complexity, Barnes Hut
Algorithm provides significant time improvement for very large n.

At a high level, the Barnes Hut algorithm provides speed improvement by aggregating many
different bodies together when such approximation is sufficiently accurate. For instance, if we
want to calculate the force on a body A caused by a cluster B of several bodies far away, it is
sufficient to treat this cluster as one body by calculating its center of mass and total mass and
computing a single force rather than each pairwise force with body A and each body in cluster
B. To enable this aggregation, the Barnes Hut algorithm organises the state into a tree structure,
where nodes represent regions of space. If a node is sufficiently far from the body A, then all
bodies in the node are aggregated and one force calculation is made.

The algorithm works in a two step process: constructing the tree, and calculating the forces.

Figure provided by http://arborjs.org [10]

First, we discuss tree construction. Each node of the tree represents a subspace of the region.
Each child of each node is a subspace of its parent node. As such, the root node represents the
full space. In 2 dimensions, each node has four children (space is divided into quadrants). In 3
dimensions, each node has 8 children (space is divided into octants). The tree consists of three
types of nodes: internal, external, and empty nodes. Internal nodes represent a region of space
that has more than one body (coloured gray in the image above). External nodes are leafs and
can only represent a single body (coloured orange). Empty nodes are regions of space that
have no bodies (coloured light blue). In order to construct such a tree, we simply initialize the

http://arborjs.org/docs/barnes-hut
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root node, then we add bodies sequentially to the root node, which recursively adds the body to
the appropriate children nodes. The recursion for tree construction is as follows:

1. If the current node is an empty node, place the body here.
2. If the current node is an internal node, update its center of mass and total mass, and add

the body to the appropriate child node.
3. If the current node is an external node (which already contains a body), convert the

current node to an internal node, update its center of mass and total mass, initialise
children nodes, and add the new body and old body to the appropriate children nodes.

The second part of Barnes Hut is about calculating the force on a body. This process is also
recursive, starting from the root node. The recursion for calculating the force on a body A is as
follows:

1. If the current node is an external node (that is not body A), calculate the force exerted by
the current node on body A and add this to body A’s force experienced.

2. If the current node is an internal node, calculate the width of the node’s region and divide
it by the distance between body A and the node’s center of mass. If this quantity is less
than a threshold theta (which is usually set to 0.5), then we use the current node’s center
of mass and mass to calculate a single force approximation for all the nodes below the
current node.

3. If the current node is an internal node, but the width over distance quantity is greater
than theta, then we call the force calculation function on each of the current node’s
children.

To simulate the evolution of a system of bodies then, we follow the following steps:

1. Initialise the system of bodies by initialising their masses, positions, and velocities.
2. For each iteration:

a. Construct the Barnes Hut tree
b. For each body:

i. Calculate the force on each body
c. For each body:

i. Update position
ii. Update velocity

The computational improvement over the naive method comes from the aggregation step when
calculating the force on each body. When the approximation condition is met, the recursion is
terminated and the aggregate of bodies in that region is calculated using the center of mass and
total mass of the corresponding node. This is what enables a complexity of O(n log n).

We demonstrate the barnes hut algorithm for both the 2D and 3D cases, on a five-body
simulation. Initial conditions were randomly drawn from a uniform distribution, to test a variety of
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planetary trajectories. The following figures show a plot of their trajectories in both 2D and 3D
plots, respectively. Of note, we observe that for randomly-sampled initial conditions, the system
appears to drift slowly from the origin away from time. This may likely be due to a nonzero
momentum in our initial conditions - thus the system will move away from the origin of space.

Figure: 2D simulations of 5 bodies
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Figure: 3D simulations of 5 bodies

Error and Stability Analysis
Choosing an ideal numerical integration scheme motivates an error analysis of each method,
and defining a metric for determining its accuracy. Here we define two ways of examining
numerical integration error, and demonstrate these metrics applied to a variety of model
systems.

Two-body problem
We first compare the visual differences between numerical integration and an analytical solution
for the two-body problem. Since there exists a closed-form solution for the two-body problem,
we interpret this as our ground truth, and can directly compare the different integration schemes
against it.

To solve for the analytical solution of the two-body problem, we use the equations for
gravitational force, and utilize SciPy’s odeint routine to numerically solve for the positions as a
function of time.
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The following plot shows snapshots of the different two-body simulations, taken at equally
spaced points in time. The figure shows, at the onset of the simulation, all three methods
(leapfrog, naive, and analytical), have the same initial conditions, and over time, the naive
method drifts apart, while the analytical and leapfrog method remain closely in sync. An
interesting feature about the naive method is that the simulation appears to fan-out gradually
over time, increasing in radius from the barycenter of the two-body system.

To help quantify these visual trends, we additionally plot the error as Euclidean distance
between the numerical integration schemes and the analytical solution. We observe that there is
an oscillatory pattern between the naive method integration and the analytical solution, due to
the differences in periodicity. This image also shows a clear picture of the fan-out effect -
gradually, the naive solution will drift away from both the analytical and leapfrog methods.
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Solar System
We now observe the differences between the two integration methods for more complex
planetary systems. We simulate a 5-body system modeled after our Solar System, and record
their dynamics.

Similar to the two-body problem, we observe that the leapfrog method looks fairly stable - the
planets orbit the sun in a closed trajectory. On the other hand, the naive method appears to
spiral out away from the sun over time.
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Without a closed-form solution for the n-body problem with more than 2 bodies, we cannot use
the same error metric as before in comparing numerical methods to the analytical solution. Thus
we motivate the following section on energy conservation to define a metric for physically
accurate simulations.

Conservation of Energy
For a closed and isolated system, its total energy must be conserved. For an astronomical
system of bodies, the total energy (E) consists of gravitational potential energy (PE) and kinetic
energy (KE). This is given by the following equations, where i represents the index of each body.

A body’s kinetic energy is simply one half of its mass times its velocity squared. A body’s
gravitational potential energy is negative one half of the gravitational constant times the sum of
every pairwise mass product divided by the distance separation. The total kinetic energy and
potential energy for the system then is the sum of each body’s kinetic energy and gravitational
potential energy. This total energy of the system should remain constant through time.

The following figure shows the plotted total energy of the solar system example over time. Since
the leapfrog method is a symplectic integrator, we observe that the total energy stays relatively
fixed throughout the duration of the simulation. On the other hand, the forward Euler’s method
shows that the energy of the system monotonically increases over time. This shows, therefore,
that the leapfrog method is a more physically accurate method for numerical simulation.
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Conservation of Momentum
Similarly, for a closed and isolated system, its total momentum must also be conserved. For a
system of many bodies, the total momentum in each dimension (x, y, z) is calculated by taking
the sum of the product of each body’s mass and velocity in said direction. Then, throughout a
numerical evolution of this system, this value should remain constant.

The figures below show the x and y dimension momenta of a 2-dimensional simulation with
Barnes Hut on a five-body simulation. We found that the momenta did not stay at a constant
value throughout. However, the momenta seemed to hover within a bound, and did not grow out
of control. This is reasonable considering that Barnes Hut is an approximation.
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Performance Benchmarks

Runtime
We performed a runtime analysis on our python implementation of the brute force n-body
problem and the Barnes hut algorithm. We confirmed that the Naive algorithm indeed scales as
O(n2) and Barnes Hut scales as O(nlog(n)) where n is the number of bodies. Curves were fitted
using linear least squares using a method similar to AM205 HW2 Q4.
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3D Simulations
We designed a 3D Galaxy Simulator C++ using Qt [9]. Qt is the leading product for creating
high-performance graphics applications across many platforms. It comes with an IDE and is
known to have a steep learning curve and strict licensing requirements. However, when
mastered, Qt is second to none in performance and is deployed on many real-world systems.

Our simulator loads a CSV file containing the position of all of the simulated bodies at every
timestep resulting in a matrix that has dimensions of Nx3B. And the columns are the positions of
each body at that time step: [b1x, b1y, b1z, b2x, b2y, b2z, ... bnx, bny, bnz]. Our largest simulation of
3000 iterations of 25000 bodies resulted in a CSV file nearly 6GB in size. Substantial
performance gains could be realized by storing the data in a binary format, this is one extension
and would be critical for scaling the simulations beyond 100k bodies.

Galaxy Initialization and special parameters
To initialize a galaxy, we randomly distribute bodies of a unit mass radially around an origin
point, using polar coordinates. We also provide the bodies with a random linear velocity tangent
to a circular trajectory. While the x and y components of the position and velocities are uniformly
distributed, the z position and acceleration is normally distributed, to provide a more disk-like
galaxy formation. At the center of each galaxy, we placed a body of m=500 500x greater than
every other body in the system (m=1). This center mass was placed to help the galaxies hold
their shape better while being pulled apart by other more massive clusters.

We created a parameter ε that would limit the distance between any two bodies to ameliorate
any numerical instabilities caused by bodies coming too close together. Empirically, we found
that setting ε=1 provided a stable simulation when N > 6000. Where lower epsilon values would
cause many bodies to be ejected when a large number of bodies were being simulated, in a
simulation of this size, you would expect at least some bodies to be ejected. However, we chose
a value of epsilon that limited this because the root of the Barnes Hut tree covers a finite region,
and expanding the region comes with an additional computational cost. To compensate for the
low mass of the particles, we set Newton's gravitational constant G to 100/B, where B is the
number of particles.
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One Galaxy Simulation B=25000 N=3000 dt=1e-3
Galaxy Simulation Euler vs Leepfrog method - Harvard AM205 Fall 2021

One Galaxy initial conditions

One Galaxy Midpoint

One Galaxy End

In this simulation, we compare Euler's method and the Leapfrog method for a one galaxy case.
The naive approach tends to expand and drift, which is consistent with an increase in the

https://youtu.be/TfwvcHuWOIA
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system's total energy, as reported earlier in this manuscript. The leapfrog reaches a stable orbit
with many bodies clustered near the center of mass.

Two Galaxy Simulation B=6000 N=1000 dt=1e-3
Two Colliding Galaxies  - AM205 Fall 2021

Two Galaxies initial conditions

Two Galaxies Midpoint

Two Galaxies End

https://youtu.be/E2NvAdr9b9Y/
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In this simulation, we compare how Euler's method and the Leapfrog method perform while in
the case where two galaxies collide. The simulation using the naive forward Euler integration
results in a system where the whole cluster drifts with a large positive velocity, while the center
of mass in the leapfrog method stays in a relatively fixed location.

Three Galaxy Simulation B=6000 N=1000 dt=1e-3
Three Colliding Galaxies (6000 bodies) - Harvard AM205 Fall 2021

Three Galaxies initial conditions

Three Galaxies Midpoint

Three Galaxies End

https://www.youtube.com/watch?v=mBqnsp2jtmk
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In the three galaxy case, the naive Euler method tends to expand over time, signifying an
increase in total energy caused by numerical issues, whereas the leapfrog method provides a
much more realistic simulation with a dense cluster of bodies near the center of mass and
where most of the bodies reach a stable orbit.

Large Three Galaxy Simulation B=60000 N=1000 dt=1e-3
Galaxy Simulation 60,000 Bodies - Harvard AM 205 Fall 2021

Three Galaxies initial conditions

Three Galaxies Midpoint A

https://www.youtube.com/watch?v=NmIIZzZVfms
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Three Galaxies Midpoint B

Three Galaxies End

Finally, we stressed the simulator by simulating 60,000 bodies using the leapfrog method of
integration. It took approximately one hour for our python implementation of the 3d Barnes Hut
algorithm to complete 1000 iterations generating ~6GB of data. Once the data was imported into
our Qt gui, the simulation was still able to run in real-time if we disabled particle shading.
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Discussion

In demonstrating conservation of energy, we noticed that while the leapfrog is able to preserve
energy much better than the forward Euler’s method, a zoomed-in image of the leapfrog
method’s total energy has some variation. We believe an explanation for this is that there is still
some error in a numerical approximation of a complex dynamical system. Further work may
include investigating other integration methods to observe further improvements to the physical
accuracy of our simulation.

One issue we encountered when implementing Barnes Hut was bodies experiencing extremely
large forces, and then shooting off into the distance. For some time, we were unable to figure
out the cause of this, but we eventually discovered that it was due to small distances between
bodies. These led to numerically unstable force calculations, where a big force is added, leading
to a big velocity, and causing bodies to shoot away in a straight line.

Another issue was the treatment of bodies leaving the defined space. This was undefined
behaviour that was leading to errors in our code, since the entire Barnes Hut algorithm starts
from the root node, so leaving the root node’s domain would require creating a larger root node.
The following figure visualizes this issue: a body’s trajectory, represented by the dotted yellow
line, is ejected from the system, and this leaves the range of the root node.

One way to handle this exception was to “wrap” the body, such that leaving one edge of the root
node leads to the body wrapping into the space from the opposite edge. But this was a rather
unphysical treatment. Instead, we opted to simply increase the domain space to minimize
bodies leaving the domain and including an assertion in the code to ensure every body is within
the domain.
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Our simulator can display 60,000 bodies in real-time. However, to handle upwards of 100k
particles, we would need to further optimize the pipeline. Some extensions could be to
aggregate nearby bodies so fewer particles would need to be displayed, as well as removing all
lighting effects. The most critical bottleneck in creating a large simulation is generating the data
file and loading it into the simulator. One substantial improvement would be to rewrite the
Barnes Hut algorithm in c++ and parallelize it. A relatively simple and major speedup would be
to write the data file in a binary format, decreasing the time it takes to save and load simulation
files.

Conclusion
We demonstrate the physical stability of symplectic integrators, such as the leapfrog method.
The leapfrog method leads to more physically planetary orbits as compared to the forward
Euler’s method, and we show that it conserves total energy of a closed system, even for long
periods of time. Additionally, the leapfrog method approximates known analytical solutions well,
and is able to stay within a very close range to the ground truth positions of a system.

Additionally, we show the effectiveness of the Barnes-Hut algorithm in improving computational
runtimes for our simulations. The Barnes-Hut algorithm has much better time complexity scaling
than naively computing the pairwise force interactions between celestial objects. Thus enables
us to run large-scale n-body simulations, and for long periods of time, on modern hardware.

Finally, we implemented a 3D galaxy simulator in Qt to visualize our simulations. These
simulations demonstrate a variety of galaxy conditions, ranging from a single stable galaxy, to
multiple galaxy collisions.
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