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Abstract

View synthesis is a deeply studied problem in which new
viewpoints of a given scene are generated. A recent break-
through in the field optimizes a neural network to learn a
radiance field representation (NeRF), and achieves state of
the art rendering of novel views. Furthermore, there have
been several advancements in rendering speed, to reduce
time per iteration and speedup the overall training and in-
ference speed. Our project specifically investigates an im-
portance sampling scheme of viewpoints, which focuses on
optimizing hard-to-learn/tricky viewing directions, and at-
tempts to reduce the total number of iterations needed to
achieve photorealistic results. While our project does not
improve the synthesis quality, we report on which views
are particularly difficult to optimize, opening further explo-
ration on sampling techniques for NeRF.

1. Introduction

View synthesis is a longstanding problem in which a new
views of a scene can be constructed from a limited set of
pictures from a given point of views. A recent breakthrough
in the field of view synthesis utilizes optimizes a neural ra-
diance field representation [6]. The authors propose repre-
senting a view of a position of a scene as a 5-dimensional
vector, where x = (x, y, z) represents the 3D location, and
d = (θ, φ) represent the viewing direction of that location.
This vector is input into a model which predicts the RGB
color value of the scene c, and volume density σ.

One unique feature about NeRF is its incredible sample
efficiency relative to other deep learning techniques. In the
field of computer vision, especially object recognition, it
is well-established that large datasets such as Imagenet [9]
are necessary to achieve model convergence of neural net-
works, with over 1000 images per class. NeRF only re-
quires on the order a hundred of images of a scene to gen-
erate photorealistic results - an order of magnitude less data
per subject.
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In this project, we further investigate this sample effi-
ciency idea by evaluating which training views may be more
”informative” for our model to train on. This is a borrowed
idea from statistics, known as importance sampling: certain
input values may have more impact on the model parameter
being estimated. Our method learns the informativeness of
each view by learning the weighting scheme of each view,
such that the model will sample more frequently from views
it has trouble reconstructing. Our work shows that this im-
portance sampling method is able to generate good recon-
struction of novel views, although it is not able to signifi-
cantly improve the baseline. Additionally, we report on the
most informative views for our model by examining their
weights.

2. Related Work
Existing work has shown that an autoencoder architec-

ture can learn an embedding of 3D shapes, by mapping a
3D location to a signed distance function [2]. However,
this requires a large quantity of ground truth 3D shapes
to train the network. Additionally, these methods do not
generalize well to complex scene geometry, and the embed-
dings only learn a simple smoothed representation of the
scene. Other work shows that high quality view synthesis
is possible using interpolation techniques between sampled
viewpoints, but this can only be achieved through densely-
sampled views [4].

NeRF combines the best of both worlds, by using a neu-
ral network to encode the 5-dimensional radiance field of
the scene, and only requires a sparse sampling of views
to achieve the same result. NeRF’s hierarchical sampling
technique is actually a form of importance sampling, as it
samples locations likely of interest along the ray when ren-
dering, to reduce rendering time. Interestingly, NeRF uses a
uniform sampling method when choosing a training to view
optimize. Thus, our project focuses on importance sam-
pling of the input views themselves: the flat 2D images and
their associated poses. Our scientific novelty is in imple-
menting a method which will automatically learn weights
with which to sample from our training set, which will give
us a measure of which views are ”better” at capturing the
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scene geometry.
Separate work by Katharopoulos and Fleuret [3] has

been shown on the use of importance sampling for deep
neural networks. Their paper derives a method to focus
computation on samples that would significantly update the
model parameters. They reformulate this problem as a vari-
ance reduction of the training estimates; in other words, as
the model trains, it gradually will become more confident
in its predictions, and these predictions will vary less over
time. When variance is sufficiently reduced (past a thresh-
old), the model can estimate the importance of each sample,
and sample from the data according to this metric.

However, their paper imposes the constraint that the
dataset size is large, and that would be infeasible to com-
pute the importance score for all training data. Their solu-
tion is to sample enough times to estimate the model’s total
variance reduction, and then only set the weights once. In
our project, we can relax both these constraints; our dataset
size is around 100 images, so we can compute the impor-
tance score for the entire set; furthermore, this allows us to
reweight multiple times over the course of training.

3. Approach
3.1. Baseline NeRF

Our baseline model for comparison is directly taken from
an original implementation of NeRF, previously written in
Pytorch [11]. For comprehension, we elucidate the features
of this baseline model.

The model is a simple MLP with 8 fully-connected lay-
ers, ReLU activation, and 256 units per layer. The model
takes as input the positional encoding of the 5D input. There
is a skip connection at the fifth layer, which concatenates the
input with the fifth layers’ activation. At the end of the MLP,
there is an additional layer with no activation that outputs
the volume density, and a 256-dimensional feature vector.
This feature vector is concatenated with the original posi-
tional encoding, and passed through a final fully connected
layer with sigmoid activation outputs the RGB radiance of
the view of the scene. This final layer ensures a consistent
multivew of the scene - only the position x is used to predict
the volume density σ, whereas the color c can be predicted
using both the position and viewing direction.

Positional encoding is an idea similar to the one used
in the Transformer architecture [10]: to map the 5D inputs
into a high-dimensional space. This purportedly helps the
MLP model generalize better, as it is more suited for data
with high-frequency variation [7]. Formally, we define the
positional encoding as

γ(p) = (sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp))

To estimate the pixel value from a particular viewing
direction, the authors take inspiration from classic volume

rendering techniques, which can be summarized by the fol-
lowing equation for the expected color of a pixel, C(r):

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt

T (t) = exp
(
−
∫ tf

tn

σ(r(s))ds
)

Here, tn and tf are the near and far bounds of the camera
ray, and T (t) represents the probability that the ray travels
from tn to t without hitting any particle. Integrating across
the bounds of the ray gives an average of how the position
looks from that viewing direction.

Finally, the authors implement hierarchical sampling
by utilizing two neural networks to represent scenes: one
”coarse” and one ”fine” network. The ”coarse” network is
trained using a coarse sampling of locations along the ray.
The ”fine” network is trained using a sampling of locations
where there is density as predicted by the coarse network.
The loss of the networks is the total squared error between
rendered and true pixel colors.

3.2. Importance Sampling of Views

We reference the derived formula for variance reduction
from Katharopoulos and Fleuret [3], which can be stated as

1

τ
= 1− 1∑B

i=1 g
2
i

||g − u||22

Where 1
τ is the variance reduction, B is the batch size,

and ||g − u||22 is the squared L2 distance of the sampling
distribution g to the uniform distribution u. Our project,
for simplicity, replaces gi with the model importance score,
Li. The paper calculates the moving average of τ with a
momentum hyperparameter aτ , which we also implement
in our methods.

Algorithm 1 describes a high-level overview of our im-
plemented method. We begin with training data X =
{(x, y, z, θ, φ)}, and batch size B. The weights of each
sample in our training set, so that samples for training will
be drawn from a uniform distribution. We first begin our
training loop by sampling a batch with size B of our train-
ing data. NeRF is trained successively on each data point,
then we will compute the variance reduction τ for this given
batch.

Once τ crosses the threshold value τth, we will recali-
brate the weights according to the model scoring of each
training sample. Our model scoring is simply the mean ren-
dering loss of each sample (higher loss means the model
has more difficulty reconstructing that pose, so it should be
sampled more often). Additionally, we will reset our vari-
ance reduction, so that in subsequent iterations the model
will reconverge according to the new weighted distribution.
This idea allows the model to adjust the importance weights
over time.
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Algorithm 1 NeRF with Importance Sampling

Inputs X = {(x, y, z, θ, φ)}, B
τ ← 0
wi ← 1

|X| ,∀xi ∈ X
repeat

if τ ≤ τth then
x sampled B times from X with weights w
L = L(NeRF(xi)),∀xi ∈ X
NeRF← sgd step(∇L)
τ ← aττ + (1− aτ )(1− 1∑

L2
i
||Li − 1

B ||
2
2)
−1

else
wi ← L(NeRF(xi)), ∀xi ∈ X
τ = 0

end if
until convergence

3.3. Experiments

We implement this algorithm on a fully-featured NeRF
model (includes hierarchical sampling, positional encod-
ing). This model is trained on the lego bulldozer dataset,
which is split into 100 training images, 25 test images, and
13 validation images. Each image has size (400×400×3),
and is associated with a (4×4) camera pose. This pose rep-
resents homogenous camera-to-world transformation ma-
trix (which places the camera in the position and orientation
relative to the world view).

Our model is trained for 100000 iterations, which takes
approximately 9 hours on a Tesla T4 GPU. For the model,
we use the Adam optimizer with learning rate 5×10−4, and
N = 64 samples along the ray. For the importance sam-
pling method, we use a threshold of τth = 1.2 and momen-
tum ατ = 0.9. To evaluate the convergence of our models,
we record the training PSNR (peak-signal-to-noise ratio [1]
, or the negative log loss). Every 25000 iterations, we ren-
der holdout views on the test set to provide a qualitiative
measure of our model results. We also trained the baseline
model, using the same hyperparameters and for 100000 it-
erations.

During training, we noticed that the NeRF model is sen-
sitive to poor initialized states. Thus, our experiments in-
clude two runs of the baselined model to estimate its over-
all performance. In the interest of time, we were unable to
generate a similar average estimate of NeRF with impor-
tance sampling; thus, we only declare a single best run for
importance sampling.

4. Results
Fig. 1 shows the results of PSNR for our varying model

runs. Our importance sampling method is able to learn com-
plex scene geometry of the lego bulldozer quite well. How-
ever, it does not perform the baseline best result. Our im-

Figure 1. Training PSNR over number iterations. Baseline aver-
age refers to the average PSNR across three different runs of the
baseline model. Due to time constraints, however, an average of
importance sampling runs was not collected.

Figure 2. Training image 12, which is difficult for NeRF to recon-
struct.

portance sampling method consistently reaches PSNR val-
ues higher than 25, but the baseline best is able to achieve
PSNR values above 30. Fig. 3 and Fig. 4 provide a qual-
itative comparison between the these two methods. Even
by iteration 25000, we observe that the scene geometry is
clearer in the baseline, while it is still blurry for the impor-
tance sampling method. By iteration 100000, the different
in image quality is most clear: The bumped ridges of the
lego toy contrast well with respect to the lighting.

The importance sampling run does seem to outperform
the baseline average, and preliminary future experiments
suggest that the importance sampling is on average most
consistent in its training process than the baseline average.

4.1. Which view is most informative?

We report an interesting finding in which one view in our
training set is consistently difficult for NeRF to reconstruct,
and has a high sampling rate. Fig. 2 illustrates this pose,
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(a) Iteration 25000 (b) Iteration 50000 (c) Iteration 75000 (d) Iteration 100000

Figure 3. Importance sampling

(a) Iteration 25000 (b) Iteration 50000 (c) Iteration 75000 (d) Iteration 100000

Figure 4. Baseline Best

Iteration # Importance Score

10000 0.0165
50000 0.0169
100000 0.0171

Table 1. Importance Score of Fig. 2

and Tab. 1 shows its importance score at certain iterations.

5. Discussion

In this section we outline possible theories as to why im-
portance sampling did not seem to improve over the base-
line image quality. Of primary concern is the sensitivity
of NeRF to initialization. The variance of PSNR across
baseline runs is quite large, and results in drastically differ-
ent rendering qualities. Time permitting, more experiments
should have been run in order to get a better estimate of
robust each of these two methods are to initialization.

Additionally, the reweighting scheme may have affected
the model quality more than anticipated. Tab. 1 shows that
training image 12 is sampled with a frequency of 0.0171,
which is almost twice the frequency over a uniform dis-
tribution (0.01). More informative (harder to reconstruct)
training views are sampled most frequently, and we fully

expect the model’s training performance to be worse, but
we did not expect test performance to suffer as well. Fur-
ther experiments adjusting the variance reduction threshold
may provide a more comprehensive understanding of how
the model reacts to the weighting policy.

6. Conclusion

We devise a method combining importance sampling for
deep neural networks with a neural radiance field represen-
tation of a 3D scene. Our method implements importance
sampling on the training views themselves, rather than on
the rendered points in the 3D space. While we do not
demonstrate an clear improvement over the baseline NeRF
model, we consider possible routes in quantifying sample
importance in NeRF models.

6.1. Future Work

Possible future directions for the reweighting scheme
have been briefly discussed in the Discussion section, such
as changing varying parameters to observe the effect on the
model. An alternative approach to measure sample impor-
tance is to consider how much a new view contributes to the
certainty of the RGB and density of particular point. To il-
lustrate this idea, two views with similar viewing angles (i.e.
largely overlapping frustums) would not contribute much to
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the certainty of a 3D point, whereas views with different
viewing angles should greatly increase the model’s confi-
dence of that location. Thus, instead of the model learn-
ing the importance scores, each view’s importance can be a
function of the both its location and viewing direction.

Other areas of interest are on improving sampling tech-
niques of the rendering itself. The original paper already
uses hierarchical sampling as one means, but there is also
exciting work to further sample on locations of interest,
such as empty space skipping and early ray termination [8]
[5]. This projects represents a step toward understanding
how to apply different sampling techniques to improve both
training and inference time for neural graphics rendering.
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